

双向直流源测试报告

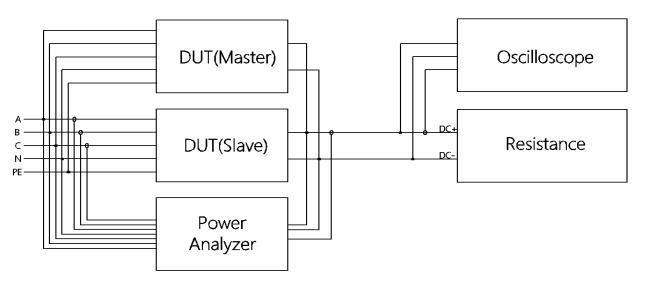
Test Report of Bidirectional DC source

南京璞骏新能源技术有限公司

Nanjing Bridge New Energy Technology Co.,Ltd

TEST DATE: <u>2020/05/25</u>

TESTER: Shawn


SERIAL NO: 20.20.113

MODEL: <u>ESD 400-1000-400-R-BSS</u>

Specification: V_{RATED}=<u>1000</u> V, I_{RATED}=<u>400</u> A, P_{RATED}=<u>400</u> KW

No.	Instruments	Model
1	Power analyzer	ZIMMER LMG670
2	Oscilloscope	Tektronix DPO2002B/ DS4000E
3	Voltage Probe	RIGOL RP1050D
4	Current Probe	CAT III 600V/1000A
5	Noise Detector	SOUND LEVEL METER
6	Temperature Scanner	FLUKE MT4 MAX

Test system connection diagram

P1. Resistive load test

DUT: Device Under Test

Resistance

Power Analyzer

Oscilloscope

Contents

1	Appearance and Structural Inspection	4
2	Voltage Range	4
3	Voltage Accuracy	5
4	Current Accuracy	6
5	Power Accuracy	7
6	Output Characteristic	8
7	Load Regulation	8
8	Ripple Test	9
9	Current Rise Time	12
10	Regulation Time	14
11	Protections Function Test	15
12	Noise Test	16
13	Temperature Test	15
14	Log Function	16
15	Clock Function	17
16	LCD Display Test	17

1 Appearance and Structural Inspection

When the power supply is in non-working state, it should be inspected by visual inspection or hand feeling method to ensure that there are no serious appearance defects caused by product assembly, or bad assembly seams and breakages that exceed the specifications. Such as scratch, indentation, color difference, paint drop. Relevant safety labels should meet the corresponding requirements of GB2894-2008 standard.

No.	Inspection contents	Confirmation (√ or×)
1	No serious appearance defects caused by product assembly, such as assembly seams and breaks beyond specifications, etc.	\checkmark
2	No serious defects affecting the appearance of products: scratches, indentations, color differences, paint dropping	\checkmark
3	Relevant safety labels should meet the requirements of GB2894-2008	\checkmark
4	Complete certificates, instructions and warranty cards, no misuse of packaging materials or multiple accessories	\checkmark

Signature:

2 Voltage Range

Connect the tested power supply with pure resistive load, make the output current within the specified range of the product, change the output voltage, and record the voltage data on the power analyzer.

No.	Setting Voltage(V)	Voltage measured by Power Analyzer(V)
1	100	100.6
2	200	200.94
3	300	300.23
4	400	399.62
5	500	500.28
6	600	600.59
7	700	700.48
8	800	799.79

9	900	900.03
10	1000	1000.3

3 Voltage Accuracy

Connect the tested power supply with a pure resistive load, make the output current within the specified range of the product, change the output voltage, record the voltage data on the tester and the displayed value of the output voltage on the tested power supply. Test at the upper limit, lower limit and intermediate value (at least three points) of the specified output voltage range. Take the one with the largest error for calculation to determine its indication error.

Its accuracy is obtained from the following formula:

$$\delta_U = \frac{|U_0 - U_1|}{U_N} \times 100\%$$

And:

 δ_U —Voltage Accuracy;

 U_1 —Voltage value measured via power analyzer, V;

 U_0 —Voltage value displayed on power supply, V;

 U_N —Rated Voltage, V;

Facilities and instruments: power analyzer, resistor load (500hm)

No.	Setting V	oltage(V)	Voltage measured by DC Source(V)	Voltage measured by Power Analyzer(V)	Voltage Accuracy	
1	10% V _{RATED}	100	99.9	100.6	0.07%	
2	20% V _{RATED}	200	199.9	200.94	0.10%	
3	30% V _{RATED}	300	299.9	300.23	0.03%	
4	40% V _{RATED}	400	399.9	399.62	0.03%	
5	50% V _{RATED}	500	499.9	500.28	0.04%	
6	60% V _{RATED}	600	599.9	600.59	0.07%	
7	70% V _{RATED}	700	699.9	700.48	0.06%	
8	80% V _{RATED}	800	799.9	799.79	0.01%	

9	90% V _{RATED}	900	899.9	900.03	0.01%	
10	100% V _{RATED}	1000	999.9	1000.3	0.04%	

4 Current Accuracy

Connect the tested power supply with a pure resistive load, make the output voltage within the specified range of the product, change the output voltage, record the current data on the tester and the display value of the output current on the tested power supply. Test at the upper limit, lower limit and intermediate value (at least three points) of the specified output current range. Take the one with the largest error for calculation to determine its indication error.

Its accuracy is obtained from the following formula:

$$\delta_I = \frac{|I_0 - I_1|}{I_N} \times 100\%$$

And:

 δ_I —Current Accuracy;

 I_1 ——Current value measured via power analyzer, A;

 I_0 ——Current value displayed on power supply, A;

 I_N —Rated Current, A;

Facilities and instruments: power analyzer, resistor load (0.68Ohm)

No.	Setting Voltage(V)		Current measured by DC Source(A)	Current measured by Power Analyzer(A)	Current Accuracy
1	1% Vrated	10	29.30	29.46	0.04%
2	2% Vrated	20	58.35	58.51	0.04%
3	3% Vrated	30	87.35	87.70	0.09%
4	4% Vrated	40 116.35		116.77	0.11%
5	5% Vrated	RATED 50 145.85 145.88		0.01%	
6	6% V _{RATED}	60	60 174.75 175.17		0.10%
7	7% VRATED	70	204.10	204.48	0.10%
8	8% V _{RATED}	80	233.45	233.95	0.13%
9	9% Vrated	90	262.45	262.97	0.13%

10	10 10% 100 V _{RATED}		291.95	292.50	0.14%	
11	11%	110	321.25	321.89	0.16%	
	VRATED		0220	0200	0.1070	
10	12%	100	050 55	054.40	0.400/	
12	VRATED	120	350.55	351.19	0.16%	
10	13%	100	270.00	200.42	0.45%	
13	VRATED	130	379.80	380.42	0.15%	
14	13.7%	137	399.90	400.69	0.20%	
	VRATED	137	399.90	400.09		

5 Power Accuracy

The host and slave of the tested power supply are connected in parallel at the input end and the output end. Set the output voltage stabilizing (CV) of the host within the specified range of the product, change the output of the slave current (CC), and record the power data on the tester and the displayed value of the output power on the tested power supply. Test at the upper limit, lower limit and intermediate value (at least three points) of the specified output current range. Take the one with the largest error for calculation to determine its indication error.

Its accuracy is obtained from the following formula:

$$\delta_P = \frac{|P_0 - P_1|}{P_N} \times 100\%$$

And:

 δ_P ——Power Accuracy;

 P_1 —Power value measured via power analyzer, kW;

 P_0 —Power value displayed on power supply, kW;

 P_N —Rated Power, kW;

No.	Setting Current (A)		Power measured by DC Source (KW)	Power measured by Power Analyzer (KW)	Power Accuracy	
1	10% V _{RATED}	20	19.85	20.03	0.09%	
2	20% V _{RATED} 40		39.85	40.09	0.12%	

3	30% V _{RATED}	60	59.90	60.15	0.13%	
4	40% V _{RATED}	80	79.95	79.95 80.19 0.12%		
5	50% V _{RATED}	100	99.95	100.28	0.16%	
6	60% V _{RATED}	120	119.95	120.32	0.18%	
7	70% V _{RATED}	140	140.00	140.37	0.19%	
8	80% V _{RATED}	160	160.00	160.42	0.21%	
9	90% V _{RATED}	180	180.05	180.52	0.23%	
10	100% V _{RATED}	200	200.05	200.58	0.27%	

6 Output Characteristic

The host and slave of the tested power supply are connected in parallel at the input end and the output end. Set the output voltage stabilizing (CV) of the main engine within the specified range of the product, change the output of the slave current (CC), read the parameter values, PF values and efficiency on the power analysis on the premise of meeting the performance characteristics specified in the product standard, and record them.

Output	Input										Power
ΣP ₀	Setting Cur	rent	ΣP_L	U/I of P	hase A	U/I of P	hase B	U/I of Phase C		Efficiency	Factor
39.85	10%Current	20	6.57	238.73	19.81	239.79	13.75	239.51	24.68	83.20%	0.99
79.90	20%Current	40	7.62	238.34	20.26	239.16	13.77	238.82	26.06	90.35%	0.99
119.95	30%Current	60	8.83	238.61	21.44	239.54	13.29	239.06	27.01	92.60%	0.99
160.00	40%Current	80	10.17	237.99	22.46	239.43	13.26	238.91	28.43	93.64%	0.99
200.00	50%Current	100	11.70	238.17	24.37	239.65	13.72	238.68	29.71	94.15%	0.99
240.00	60%Current	120	13.33	237.64	26.21	239.41	14.85	238.09	31.51	94.45%	0.99
280.05	70%Current	140	15.17	237.27	28.64	238.86	15.99	237.81	34.18	94.60%	0.99
320.00	80%Current	160	17.16	236.85	31.72	238.91	19.04	237.74	36.94	94.64%	0.99

360.00	90%Current	180	19.27	237.39	34.58	239.21	20.74	238.18	39.48	94.65%	0.99
399.95	100%Current	200	21.64	236.99	38.06	238.38	23.69	237.32	43.11	94.58%	0.99

7 Load Regulation

The host and slave of the tested power supply are connected in parallel at the input end and the output end. Set the output voltage (CV) of the main engine within the specified range of the product, change the change of the slave current (CC) between 0-100%, and read the output voltage display value of the power analyzer at no-load and on load. Take its value for calculation to determine the load adjustment rate of its power supply.

The load adjustment rate is obtained from the following formula:

$$L = \frac{|U_0 - U_1|}{U_n} \times 100\%$$

And:

L—–Voltage Accuracy; U_1 —–On-load voltage, V; U_0 —–No-load voltage, V; U_n —Rated voltage, V;

No.	Setting Voltage		On-load voltage	No-load voltage	Load Regulation
1	10% V _{RATED}	100	100.53	100.6	0.01%
2	20% V _{RATED}	200	200.91	200.94	0.00%
3	30% Vrated	300	299.74	300.23	0.05%
4	40% Vrated	400	398.81	399.62	0.08%
5	50% Vrated	500	499.62	500.28	0.07%
6	60% Vrated	600	600.11	600.59	0.05%

7	70% V _{RATED}	700	699.98	700.48	0.05%
8	80% V _{RATED}	800	799.24	799.79	0.05%
9	90% Vrated	900	899.69	900.03	0.03%
10	100% Vrated	1000	1000.94	1000.3	0.06%

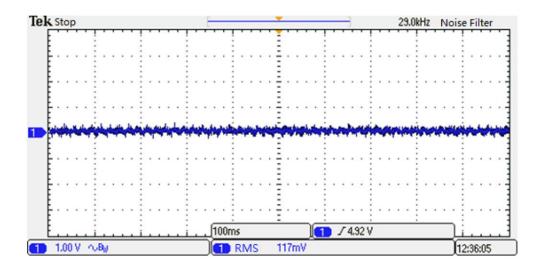
8 Ripple Test

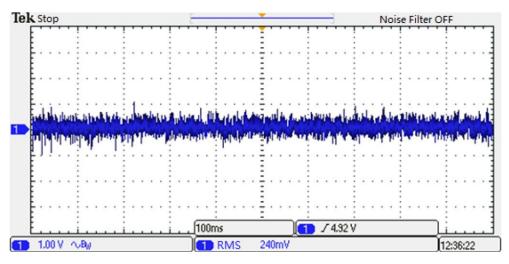
Ripple voltage is the superposition of all AC voltage components at the output of power supply. When the power supply DC output, the tested power supply is connected with pure resistive load, so that the output voltage and output current are set at the maximum value specified by the product, read the AC voltage indication value, and take the maximum value in the test.

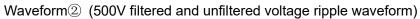
The ripple coefficient is obtained from the following formula:

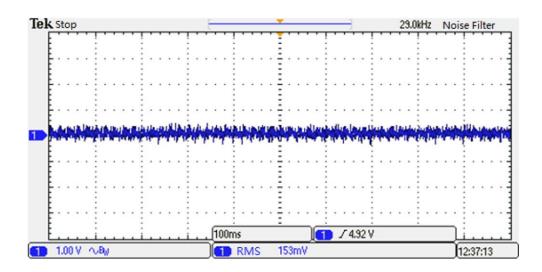
$$Y = \frac{U_{mrs}}{U_N} \times 100\%$$

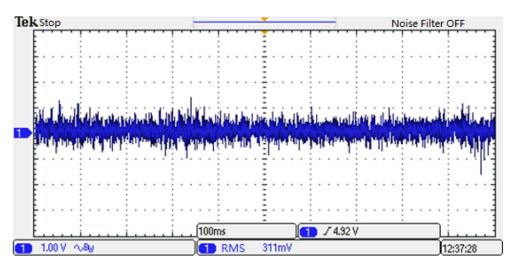
And:


Y ———Ripple coefficient;

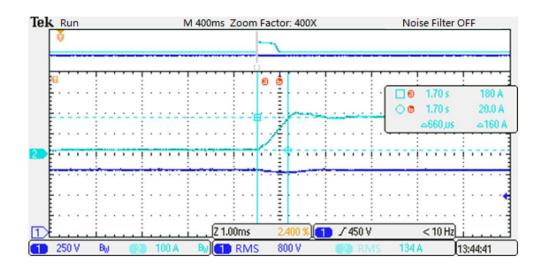

 U_N ——Rated Voltage, V;

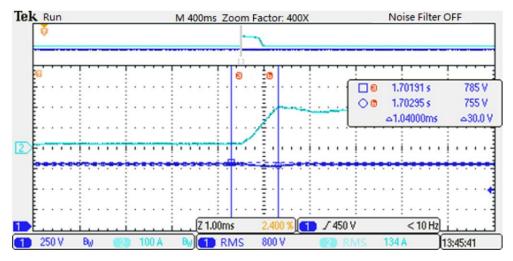

Facilities and instruments: resistor load, oscilloscopes(500hm)


Setting Voltage			29KHz		Waveform		
Setting	y voltage	U _{rms}	Ripple coefficient	U _{rms} Ripple coefficient		Recording	
50%	500	117mv	0.01%	153mv	0.02%		
VRATED	300	1171110	0.0170	100111	0.02 /0	1	
100%	1000	240mv	0.029/	211 m	0.020/		
VRATED	1000	2401110	0.02%	311mv	0.03%	2	


Oscilloscope setting: Channel coupling: AC, Bandwidth: 20MHz, Probe ratio: 500X, Noise filter: 29khz, Sampling depth: 1.25m, Sampling time: 100ms. Read voltage 500/1000v waveform is as follows:

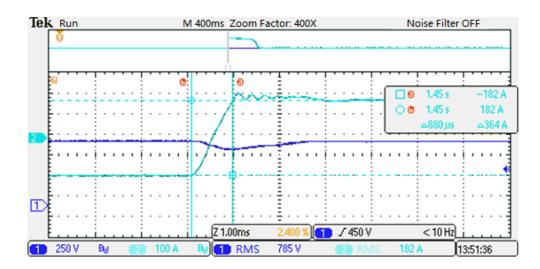
Waveform③ (1000V filtered and unfiltered voltage ripple waveform) Signature:

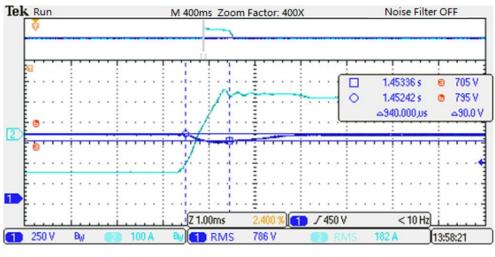

9 Current Rise Time


The host and slave of the tested power supply are connected in parallel at the input end and the output end. Set the output voltage (CV) of the main engine within the specified range of the product, change the change of the slave current (CC) between - 90% and 90%, and record the measurement waveform with an oscilloscope.

Facilities and instruments: oscilloscopes

Initial voltage	Current Rise Time	Climb time(us)	Waveform Recording
800V	10~90%	660us	1
8000	-90~90%	888us	2


Oscilloscope setting: Channel coupling: DC, Bandwidth: 20MHz, Probe ratio: 500X, Noise filter: OFF, Sampling depth: 1.25M, Sampling time: 1ms. Read the conversion waveform as follows:



Waveform① Current Rise Time

(10~90% Load change. Channel 1 is voltage output and channel 2 is current output)

Waveform² Current Rise Time

(-90~90% Load change. Channel 1 is voltage output and channel 2 is current output)

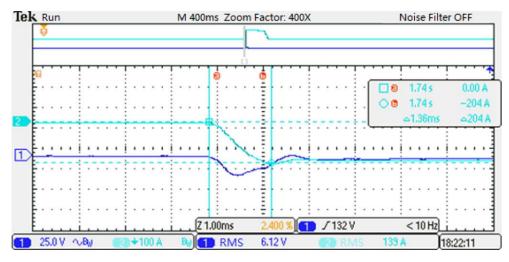
Signature:

10 Regulation Time

The host and slave of the tested power supply are connected in parallel at the input end and the output end. Set the output voltage (CV) of the main engine within the specified range of the product, change the change of the slave current (CC) between 0% and 100%, and record the measurement waveform with an oscilloscope.

$$P_1 = U * I = 800 * 0 = 0KW$$

 $P_2 = U * I = 800 * 200 = 160KW$


And:

- U _____ Setting Voltage Value, 800V;

Facilities and instruments: resistor load, oscilloscopes(30hm)

Initial voltage	Final voltage	Climb time(ms)	Waveform Recording
0%V _{RATED}	100%V _{RATED}	<1.36	1

Oscilloscope setting: Channel coupling: DC, Bandwidth: 20MHz, Probe ratio: 500X, Noise filter: OFF, Sampling depth: 1.25M, Sampling time: 1ms. Read the conversion waveform as follows:

Waveform① Regulation Time

(0~100% Load change. Channel 1 is voltage output and channel 2 is current output)

Signature:

11 Protections Function Test

No.	Test Items	Confirmation (√or×)
1	If the output voltage is set above the rated voltage specified by the power supply, the power supply should be able to limit the voltage output.	\checkmark
2	If the input voltage is set above the rated voltage specified by the power supply, the power supply should cut off the input immediately and give an alarm.	\checkmark
3	Adjust the load or output voltage so that the output current is more than 1.2 times the rated value. The power supply should be able to start protection immediately and cut off the output.	

Signature:

12 Noise Test

NO.	Measured value	Equivalent calculation value
1	72.3	
2	72.6	
3	73.4	
4	73.8	
5	74.7	72.0
6	74.2	73.9
7	73.8	
8	74.5	
9	75.0	
10	74.7	

Signature:

is remperature rest	13	Tem	perature	Test
---------------------	----	-----	----------	------

Test time		Measured value							
NO.			Master		Slave				
		Transformer	Inductance	IGBT	Transformer	Inductance	IGBT		
1	0min	27.1	27.5	32.5	27.3	27.8	33.1		
2	20 min	32.3	32.7	47.9	33.1	34.9	47.4		
3	40 min	42.9	43.7	55.4	44.8	44.3	55.9		
4	60 min	51.5	51.9	66.3	51.7	53.8	67.6		
5	80 min	57.3	58.6	75.3	58.6	59.3	76.7		
6	120min	62.6	63.5	81.4	63.3	64.7	82.1		

Signature:

14 Log Function

Enter the settings interface to view log records and clear them before they leave the factory.

Signature:

15 Clock Function

Enter the settings interface to view and set the current time, year, month, day, hour and minute.

Signature:

16 LCD Display Test

In the setting and running state, there is no flicker and flower on LCD screen.

Signature: