

Test Report of Bidirectional DC source

TEST DATE: <u>26 May, 2023</u>

TESTER: Shawn Qiu

SERIAL NO: <u>B22450100.01</u>

MODEL: BSL 200-1000-800

Specification: $P_{RATED} = 200 \text{ kW}$, $V_{RATED} = 5 \sim 1000 \text{ V}$, $I_{RATED} = \pm 800 \text{ A}$

No.	Instruments	Model
1	Power Analyzer	ZIMMER LMG670
2	Oscilloscope	Tektronix MSO44
3	Voltage Probe	RIGOL RP1050D
4	Current Probe	PINTECH PT740-3A
5	Noise Detector	SOUND LEVEL METER
6	Temperature scanner	FLUKE MT4 MAX
7	Multichannel data recorder	TOPRIE TP700

Schematic diagram of the test system

Figure 1 Test with No-Load

Figure 2 Test with Electronic Load

CONTENT

1. APPEARANCE AND STRUCTURAL INSPECTION	5
2. VOLTAGE RANGE	5
3. CURRENT RANGE	6
4. VOLTAGE ACCURACY	7
5. CURRENT ACCURACY	8
6. POWER ACCURACY	9
7. EFFICIENCY	10
8. CURRENT THD TEST	12
9. LOAD REGULATION	12
10. RIPPLE TEST	14
11. CURRENT RISE TIME	16
12. VOLTAGE RISE TIME	19
13. TEMPERATURE TEST	20
14. NOISE TEST	21
15. PROTECTION	22
16. CLOCK FUNCTION	22
17. LCD DISPLAY TEST	22

1. Appearance and Structural Inspection

When the power supply is power off, thorough appearance inspection checks should be conducted using either the visual inspection method or the hand feel method to ensure that there are no serious appearance defects such as scratches, indentations, color difference, paint drops, etc., caused by product assembly or bad assembly seams and breakages that exceed the specifications. Relevant safety labels should meet the corresponding requirements of the GB2894-2008 standard.

No.	Inspection contents	Confirmation (√or×)
1	No serious appearance defects were caused by product assembly, such as assembly seams and breaks beyond specifications, etc.	\checkmark
2	No serious defects affect product appearance e.g. scratches, indentations, color differences, and paint dropping.	\checkmark
3	Relevant safety labels should meet the GB2894-2008 requirement.	\checkmark
4	Complete certificates, instructions and warranty cards, and no misuse of packaging materials, or multiple accessories.	\checkmark

Signature: Shawn Qm

2. Voltage Range

Connect the input of the BSL to the GRID to keep the input voltage within the operating voltage range of the power supply. Adjust the output voltage value within the rated voltage range. Read and record the measured value(s) on the power analyzer.

Facilities and instruments: Power analyzer

No.	Setting Voltage (V)	Voltage Measured by Power analyzer (V)
1	100	100.02
2	200	200.00
3	300	300.01
4	400	400.07
5	500	500.03

6	600	600.09
7	700	700.06
8	800	800.01
9	900	899.99
10	1000	999.96

Signature: Shawn Qm

3. Current Range

Connect the input of two BSL units in parallel and connect them to the GRID to keep the input voltage within the operating voltage range of the power supply, and connect the output of the two BSL units in parallel. Set the first BSL unit (CV mode) to stabilize the output voltage of 250V, and adjust the output current value of the second BSL unit (CC mode) within the rated output power range to reach the maximum output. (The test connection diagram as shown in Figure 2). Read and record the measured values on the power analyzer.

Facilities and	l instruments:	Power	analyzer
-----------------------	----------------	-------	----------

No.	Setting Voltage (V)	Current Measured by Power analyzer (A)
1	80	79.79
2	160	158.97
3	240	238.97
4	320	318.88
5	400	398.90
6	480	478.88
7	560	558.61
8	640	638.66
9	720	718.63
10	800	798.72

Signature: Shawn Qm

4. Voltage Accuracy

Connect the input of BSL to the GRID to keep the input voltage within the operating voltage range of the power supply. Set the output voltage value to ensure that the power supply works within the rated output voltage range, read and record the output voltage measurement value on the power analyzer and the power supply, and take the largest error for calculation. (The test connection diagram as shown in Figure 1). The voltage accuracy is obtained using the following formula:

$$\delta_U = \frac{|U_0 - U_1|}{U_N} \times 100\%$$

where:

 δ_U ——Voltage accuracy;

 U_0 —Voltage value displayed on the power supply, V;

 U_N —Rated voltage, V.

Facilities and instruments: Power analyzer

No.	Setting Voltage (V)		Measured by DC Source (V)	Measured by Power analyzer (V)	Voltage Accuracy
1	10% V _{RATED}	100	99.9	100.02	0.01%
2	20% V _{RATED}	200	200.0	200.00	0.00%
3	30% V _{RATED}	300	300.0	300.01	0.00%
4	40% V _{RATED}	400	399.9	400.07	0.02%
5	50% V _{RATED}	500	500.0	500.03	0.00%
6	60% V _{RATED}	600	600.0	600.09	0.01%
7	70% V _{rated}	700	700.0	700.06	0.01%
8	80% V _{RATED}	800	799.9	800.01	0.01%
9	90% V _{RATED}	900	900.0	899.99	0.00%
10	100% V _{RATED}	1000	1000.0	999.96	0.00%

Signature: Shawn Qim

5. Current Accuracy

Connect the input of two BSL units in parallel and connect them to the GRID to keep the input voltage within the operating voltage range of the power supply, and connect the output of the two BSL units in parallel. Set the first BSL unit (CV mode) to stabilize the output voltage of 250V, and adjust the output current value of the second BSL unit (CC mode) within the rated output power range to reach the maximum output. Record the output current measurement value of the power analyzer and power supply, and take the largest error for calculation. (The test connection diagram as shown in Figure 2). The current accuracy is obtained by the following formula:

$$\delta_I = \frac{|I_0 - I_1|}{I_N} \times 100\%$$

where:

 δ_I ——Current accuracy;

*I*₁——Current value measured via power analyzer, A;

*I*₀——Current value displayed on power supply, A;

 I_N —Rated current, A.

Facilities and instruments: Power analyzer

No.	Setting Current (A)		Measured by DC Source (A)	Measured by Power analyzer (A)	Current Accuracy
1	10% V _{RATED}	80	79.9	79.79	0.01%
2	20% V _{RATED}	160	159.9	158.97	0.12%
3	30% V _{RATED}	240	239.9	238.97	0.12%
4	40% V _{RATED}	320	320.0	318.88	0.14%
5	50% V _{RATED}	400	400.0	398.90	0.14%
6	60% V _{RATED}	480	480.0	478.88	0.14%

7	70% V _{RATED}	560	560.0	558.61	0.17%
8	80% V _{rated}	640	640.0	638.66	0.17%
9	90% V _{RATED}	720	720.0	718.63	0.17%
10	100% V _{RATED}	800	800.0	798.72	0.16%

Signature: Shawn Qm

6. Power Accuracy

Connect the input of two BSL units in parallel and connect them to the GRID to keep the input voltage within the operating voltage range of the power supply, and connect the output of the two BSL units in parallel. Set the first BSL unit (CV mode) to stabilize the output voltage of 250V, and adjust the output current value of the second BSL unit (CC mode) within the rated output power range to reach the maximum output. Record the output power measurement value of the power analyzer and power supply, and take the largest error for calculation. (The test connection diagram as shown in Figure 2). The power accuracy is obtained using the following formula:

$$\delta_P = \frac{|P_0 - P_1|}{P_N} \times 100\%$$

where:

 δ_P —Power accuracy;

P₁——Power value measured via power analyzer, KW;

 P_0 —Power value displayed on power supply, KW;

 P_N —Rated power, KW.

Facilities and instruments: Power analyzer

I	No.	Setting Current (A)		Measured by DC Source (KW)	Measured by Power analyzer (KW)	Current Accuracy
	1	10% V _{rated}	80	19.95	19.95	0.00%

2	20% V _{RATED}	160	39.95	39.76	0.10%
3	30% V _{rated}	240	59.95	59.77	0.09%
4	40% V _{RATED}	320	80.00	79.76	0.12%
5	50% V _{RATED}	400	100.00	99.77	0.12%
6	60% V _{RATED}	480	120.00	119.77	0.12%
7	70% V _{RATED}	560	140.00	139.71	0.14%
8	80% V _{RATED}	640	160.00	159.73	0.14%
9	90% V _{RATED}	720	180.00	179.73	0.14%
10	100% V _{RATED}	800	200.00	199.76	0.12%

Signature: Shawn Qm

7. Efficiency

Connect the input of two BSL units in parallel and connect them to the GRID to keep the input voltage within the operating voltage range of the power supply, and connect the output of the two BSL units in parallel. Set the first BSL unit (CV mode) to stabilize the output voltage of 250V, and adjust the output current value of the second BSL unit (CC mode) within the rated output power range to reach the maximum output. (The test connection diagram as shown in Figure 2). Read and record the measured value(s) of the input side on the power analyzer.

Facilities and instruments: Power analyzer

Output	Setting		Input	Efficiency	Power Factor	
ΣΡο	(A)) ΣP_A ΣP_B		ΣPc		
199.76	800	71.56	72.51	72.11	92.4%	0.99

DEF	AULT Me	asu 1kw	Sums		Display
		1	coll	Σ	Normal
U _{trms}	250.10	5 V	250.105	V	Transform
U _{dc}	250.105	5 V			
U _{ac}	0.203	3 V			Phase - Ch 🗐
l _{trms}	798.722	2 A	798.722	A	AII
I _{dc}	798.718	3 A			Bandwidth
I _{ac}	2.629	A			Wide (====)
Р	199.763	3 kW	199.763	kW	Values
PF	0.99999)	0.99999		Many
S	199.764	↓ kVA	199.764	kVA	
Q	0.676	5 kvar	675.996	var	
f _{cycle}					
Z	313.132	2mΩ			
Q_	500.0 ms Grp	1 Filt 9 Hz		Grp. 2	
	² ∆ 1 ⁴ / ₂ ³ 1	50.0 V 50.0 A	2 250.0 V	3 250.0 V 4 400.0 V	

Measured value of the output (@full-load)

DEF	FAULT Me	asu 1kw	Sums					Display
		1	2		3		coll _Σ	Normal
U _{trms}	231.840) V	232.424	V	231.659	V	401.791 V	Transform
U _{dc}	0.008	3 V	0.164	V	0.103	V		
U _{ac}	231.840) V	232.423	V	231.659	V		Phase - Ch 📃
I _{trms}	309 . 97	A	313.449	А	312.858	А	540.567 A	All
I _{dc}	-0.938	8 A	0.167	А	0.541	А		Bandwidth
I _{ac}	309.969	A 6	313.449	А	312.858	А		
Р	71.56	5 kW	72.516	kW	72.114	kW	216.196 kW	Values
PF	0.9958	5 ind	0.99538	ind	0.99500	ind	0.99540	Many
S	71.86	3 kVA	72.853	kVA	72.476	kVA	217.195 kVA	
Q	6.539) kvar	6.998	kvar	7.238	kvar	20.8142 kvar	$\langle $
f_{cycle}	50.034	7 Hz	50.0347	Hz	50.0347	Hz	50.0347 Hz	
Z	747.942	2mΩ	741.503	mΩ	740.459	mΩ		
	<u>Freeze</u> 49.9 49.1 49.1 123	. 1 Filt 7 Hz 50.0 V 50.0 A	2 250.0 V	3	8 250.0 V	Grp. 2 4 900.0	<u>V</u>	

Measured value of the input (@full-load)

Signature: Shawn Qm

8. Current THD Test

Connect the input of two BSL units in parallel and connect them to the GRID to keep the input voltage within the operating voltage range of the power supply, and connect the output of the two BSL units in parallel. Set the first BSL unit (CV mode) to stabilize the output voltage of 250V, and adjust the output current value of the second BSL unit (CC mode) within the rated output power range to reach the maximum output. (The test connection diagram as shown in Figure 2). Read and record the measured value(s) of the three-phase current THD on the GRID side on the power analyzer.

No.	Setting Current (A)	IA _{THD}	IB _{THD}	IC _{THD}		
1	80	21.47%	23.25%	22.39%		
2	160	12.01%	12.65%	12.57%		
3	240	8.10%	9.82%	8.87%		
4	320	6.35%	7.05%	6.48%		
5	400	4.89%	5.79%	5.35%		
6	480	4.18%	4.66%	4.42%		
7	560	3.39%	4.00%	3.54%		
8	640	3.31%	3.63%	3.44%		
9	720	2.54%	3.07%	2.82%		
10	800	2.35%	2.65%	2.57%		

Facilities and instruments: Power analyzer

Signature: Shawn Qm

9. Load Regulation

Connect the input of two BSL units in parallel and connect them to the GRID to keep the input voltage within the operating voltage range of the power supply, and connect the output of the two BSL units in parallel. Set the first BSL unit (CV mode) to stabilize the output voltage of 250V,

and adjust the output current value of the second BSL unit (CC mode) within the rated output power range to reach the maximum output. (The test connection diagram as shown in Figure 2). Read and record the output voltage measurement value on the power analyzer at no-load and full-load conditions. The Load Regulation can be obtained using the following formula:

$$L = \frac{|U_0 - U_1|}{U_1} \times 100\%$$

where:

L —— Load Regulation;

*U*₁——Full-load voltage, V;

U₀——No-load voltage, V;

Facilities and instruments: Power analyzer, Oscilloscope

No.	Setting Voltage (V)	Setting current (A)	No-load Voltage Measured (V)	Full-load Voltage Measured (V)	Load Regulation
1	250	0	250.03		0.01%
2	250	800		250.01	0.01%
3	1000	0	1000.20		0.01%
4	1000	200		1000.14	0.01%

250V-800A (Channel 1 is voltage output and channel 3 is current output)

1000V-200A (Channel 1 is voltage output and channel 3 is current output)

Signature: Shawn Qm

10. Ripple Test

Connect the input of the BSL to the GRID to keep the input voltage within the working voltage range of the power supply. Set the output voltage value to keep the power supply output within the rated voltage range, read the superposition indication value of all AC voltage components at the output end of the power supply, and take the maximum value in the test. The ripple coefficient is obtained from the following formula:

$$Y = \frac{U_{rms}}{U_N} \times 100\%$$

And:

Y ———Ripple coefficient;

U_N ——Rated Voltage, V;

No.	Setting Voltage		Noise	filter on			Noise f		Waveform	
	(V)	U _{rms}	Ripple coefficient	U _{pp}	Ripple coefficient	U _{rms}	Ripple coefficient	U_{pp}	Ripple coefficient	Recording
1	500	0.28	0.06%	2.77	0.55%	0.65	0.13%	7.22	1.44%	1-2
2	1000	0.31	0.03%	2.64	0.26%	0.65	0.07%	8.60	0.86%	3-4

Facilities and instruments: Power analyzer, Oscilloscope

Waveform (500V filtered voltage ripple waveform)

Waveform② (500V unfiltered voltage ripple waveform)

Waveform③ (1000V filtered voltage ripple waveform)

Waveform (1000V unfiltered voltage ripple waveform)

Signature: Shawn Qm

11. Current Rise Time

Connect the input of two BSL units in parallel and connect them to the GRID to keep the input voltage within the operating voltage range of the power supply, and connect the output of the

two BSL units in parallel. Set the first BSL unit (CV mode) to stabilize the output voltage of 250V, and adjust the output current value of the second BSL unit (CC mode) within the rated output power range to reach the maximum output. (The test connection diagram as shown in Figure 2). Change the current of the second BSL unit (CC mode) between -90 ~ +90%. Record the measured waveform with oscilloscope.

Facilities and	instruments:	Oscillosco	pe
-----------------------	--------------	------------	----

Initial voltage (V)	Current Rise Time	Climb Time (ms)	Adjusting Amplitude (V)	Waveform Recording
250	0~90%	2.25	109.19	Waveform 1, 3
230	90~-90%	6.88	76.66	Waveform 2, 4

Waveform.1 Current rise time (0 ~ 90% load change)

(Channel 1 is voltage output and channel 3 is current output)

Waveform.2 Current rise time (90 ~ -90% load change)

(Channel 1 is voltage output and channel 3 is current output)

Waveform.3 Voltage regulation waveform during current rise (0 ~ 90% load change)

(Channel 1 is voltage output and channel 3 is current output)

Waveform.4 Voltage regulation waveform during current switching (90 ~ -90% load change)

(Channel 1 is voltage output and channel 3 is current output)

Signature: Shawn Qm

12. Voltage Rise Time

Connect the input of the BSL unit to the GRID to keep the input voltage within the working voltage range of the power supply. Set the output voltage value and change from 10% to 100% of the rated voltage. Record the measured waveform with an oscilloscope.

Facilities and instruments: Oscilloscope

Initial voltage	Final voltage	Climb time (ms)	Waveform Recording		
10%V _{RATED}	100%V _{RATED}	<1.68	Waveform 1		

Waveform.1 Voltage rise time

Signature: Shawn Qm

13. Temperature Test

Connect the input of two BSL units in parallel and connect them to the GRID to keep the input voltage within the operating voltage range of the power supply, and connect the output of the two BSL units in parallel. Set the first BSL unit (CV mode) to stabilize the output voltage of 250V, and adjust the output current value of the second BSL unit (CC mode) within the rated output power range to reach the maximum output. (The test connection diagram as shown in Figure 2). Read and record the temperature measurement values of internal reactors, transformer, IGBT and other components when the power supply is running at full load.

No.	1	2	3	4	5	6	7	8	9	10	11
Test point	Tran	Reac	Reac	Reac	Reac	IGBT	IGBT	IGBT	IGBT	IGBT	IGBT
	sf.1	tor-1	tor-2	tor-3	tor-4	1	2	3	4	5	6

Facilities and instruments: Temperature scanner, Electronic Load.

	0min	31.5	30.1	29.7	30.4	31.0	30.3	31.1	30.7	31.4	31.6	31.5
	30 min	48.5	44.4	41.8	43.2	46.7	59.4	61.8	60.5	62.7	65.1	70.2
	60 min	53.1	47.9	44.8	46.6	51.0	67.8	70.1	69.7	73.7	75.3	82.3
weasured	90 min	62.3	51.2	48.1	50.7	56.2	69.3	71.7	71.1	74.3	76.3	84.1
	120 min	68.5	52.9	55.5	56.2	62.2	69.7	72.2	72.2	75.2	77.1	85.4
	180 min	72.9	57.4	64.5	64.5	69.3	71.0	72.7	72.8	76.2	77.9	86.2

Signature: Shawn Qim

14. Noise Test

Connect the input of the BSL unit to the GRID to keep the input voltage within the working voltage range of the power supply. Adjust the output voltage within the rated voltage range, read and record the noise measurement within 1m around the power supply.

Facilities and instruments: Noise Detector

No.	Measured	Equivalent calculation value
1	74.8db	
2	74.6db	
3	75.4db	
4	76.0db	
5	74.1db	75 50
6	74.3db	75.52
7	80.9db	
8	78.3db	
9	73.7db	
10	73.1db	

Signature: Shawn Qm

15. Protection

No.	Test Items	Confirmation (√or×)
1	Adjust the output voltage to be slightly above the rated voltage specified by the power supply. The power supply will limit the voltage output.	\checkmark
2	Adjust the input voltage to be slightly above the rated voltage specified by the power supply. The power supply will promptly disconnect the output and trigger the alarm system.	\checkmark
3	Adjust the load or output voltage for the output current to be 1.2 times greater than the rated value. The power supply will trigger the protection mechanism and cut off the output.	\checkmark
4	Adjust the temperature setting value of the software program. When the current measured temperature exceeds 10% of the software setting temperature, the power supply will promptly disconnect the output and trigger the alarm system.	\checkmark

Signature: Shawn Qm

16. Clock Function

Enter the settings interface to view and set the current time, year, month, day, hour, and minute.

Signature: Shawn Qm

17. LCD Display Test

In the setting and running state, no screen flickers and flower appear on the LCD screen.

Signature: Shawn Qm